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This work deals with two aspects of the twinning problem.

Firstly, an improvement of a known statistical test aimed at

detecting twinning is presented and, secondly, a new

parametrization of twinning is described, as well as a new

method to obtain an accurate estimate of the degreee of

twinning. During work on crystals of the dimerization-

initiation site of the HIV-1 genomic RNA, perfectly twinned

crystals were obtained which were not immediately recognized

as such by use of a known statistical method. This method,

reminiscent of Wilson tests for the detection of centro-

symmetric space groups, relies on the calculation of hF2i/hFi2
or, equivalently, of hI2i/hIi2. It is shown that overlooking

experimental errors may lead to erroneously large values of

this index and, in turn, to ambiguous or incorrect conclusions.

An immediate solution to this problem is presented.

Independently, an alternative parametrization which

expresses both the effect of twinning on intensities and the

operation of untwinning to recover the correct intensities is

proposed. A new method for estimating the degree of

twinning is also presented. It is based upon maximization of

the cross-correlation coef®cients between intensities of all

available data sets, and yields a fully analytical solution. Tests

made with experimental data are quite satisfactory. It is

suggested that the latter results could be used ef®ciently

within the MIR method by allowing re®nement, through one

additional parameter only, of the twinning ratios of all data

sets considered for phasing. Finally, the new parametrization

of twinning has striking consequences in this correlation-based

twinning determination: very unexpectedly, it yields a novel

estimate of the `twinning ratio' of a potentially twinned crystal

which is fully independent of the data set used for the

comparison.
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1. Introduction

Twinning by hemihedry consists of a growth defect leading to

two or more crystal domains of macroscopic size associated in

opposite orientations, such that the reciprocal lattices of the

two orientations coincide perfectly but wrongly (Friedel,

1926). Because the individual domains are larger than the

coherence length of the X-rays, there is no interference

between the scattered waves originating from each domain.

Instead, the intensities from each domain simply add up. As a

consequence, the resulting intensity of each re¯ection is a

weighted mean of the intensities of two non-equivalent

re¯ections,

J�h1� � �1ÿ ��I�h1� � �I�h2� �1a�
J�h2� � �I�h1� � �1ÿ ��I�h2�; �1b�
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where h1 and h2 are the Miller indices of two re¯ections

related by the twinning, J is the observed intensity, I is the

exact intensity that would be measured in the absence of

twinning and � is the fraction of twinning, i.e. the volume ratio

of the two crystals.1 A priori, all situations can be encountered,

ranging from a negligible contribution from one of the two

orientations (� ' 0), to equal importance of both of them

(� = 0.5). In the latter situation, each re¯ection is exactly the

average of two independent re¯ections, and an additional

symmetry is present in the diffraction pattern. In an inter-

mediate situation, i.e. for values of � signi®cantly different

from 0.5, the previous linear system of equation characterized

by the matrix

T��� � 1ÿ � �
� 1ÿ �

� �
�2�

has a non-null determinant

D��� � �1ÿ ��2 ÿ �2 � 1ÿ 2� �3�
and is readily inverted to yield the set of Is from the observed

Js. In practice, the problem is not to perform this trivial

`untwinning' operation when possible, but rather to detect the

twinning, which may not readily be apparent on visual

inspection of the crystals. Furthermore, in the case of perfect

twinning, even though `untwinning' cannot be achieved, there

is a strong need for its detection, since otherwise a wrong

space group will be used and, potentially, time could be wasted

in unsuccessful efforts.

To this end, different statistical tests have been proposed. In

the case of partial twinning, � can be determined following

one of the methods described or referenced in Yeates (1997).

Alternatively, an analytical method based upon maximization

of cross-correlation coef®cients between all available data sets

is proposed in this paper. In the case of perfect twinning,

however, such methods are useless, since a real twofold

symmetry without twinning could produce exactly the same

situation. Another kind of test must then be relied upon, such

as that described by Stanley (1972). This test, reminiscent of

the classical test for the detection of centrosymmetry (Wilson,

1949), is based upon the observed statistics of hF2i/hFi2 or,

analogously, of hI2i/hIi2 for acentric re¯ections. Values of

hF2i/hFi2 of 1.13 and 1.27 or hI2i/hIi2 of 1.5 and 2 correspond to

twinned and untwinned crystals, respectively.

During work on crystals of the HIV-1 genomic RNA

dimerization-initiation site (DIS), crystals with trigonal

symmetry were obtained which contain two molecules in the

asymmetric unit (Yusupov et al., 1999). Occasionally, hexa-

gonal crystals with identical cell parameters were obtained.

Incorrectly, it was ®rst thought that a slight reorganization of

the molecules would move the twofold non-crystallographic

axis of symmetry in the trigonal space group exactly onto the

threefold axis, thus transforming the trigonal crystal into a

hexagonal crystal. Consistent with this interpretation was the

presence of strong peaks for � = 180� in the self-rotation

function of the trigonal crystals, at positions corresponding to

the additional twofold axis for the hexagonal space group.

Furthermore, when perfect twinning was correctly considered

as a possible explanation, the test based on the value of

hF2i/hFi2 did not clearly show the expected theoretical value

for twinning for the hexagonal form: an ambiguous value was

found at low and medium resolution and the characteristic

value for the absence of twinning was even found at high

resolution (Fig. 1). However, comparison with the values

obtained for an untwinned trigonal data set showed that there

was a tendency to obtain values which were too high (Fig. 1),

which strongly suggested that the ambiguous values obtained

for the hexagonal crystal could be the result of this tendency. It

was then realised that improper accounting for experimental

errors explained the observed tendency. In the following, we

®rst examine how to deal with experimental errors in order to

improve this test.

2. Improvement of the statistical test for the detection
of twinning

Let us call RX the ratio hX2i/hXi2, where X can be F or I. It is

seen that RX is strongly related to the quantity var(X) =

hX2i ÿ hXi2, the variance of X. We immediately obtain

RX � 1� var�X�=hXi2: �4�
Clearly, var(X) is the combination of two statistically inde-

pendent terms. The ®rst of these terms, var�(X), results from

the true `crystallographic' variance originating from the

distribution of the electron density within the unit cell. The

Figure 1
Representation of the twinning index RF = hF2i/hFi2 in shells of
resolution for two experimental structures. Thick lines, experimental
values of RF. Thin lines, theoretical values after linear least-squares ®t to
the experimental values (see text for explanations and values). It should
be emphasized that these theoretical values are not the values obtained
after substraction of the effect of experimental errors, but rather are
theoretical values taking into account the additional term from
experimental errors. Therefore, they should be superimposed onto the
experimental terms (thick lines) as correctly seen in this ®gure. Upper
curves (squares), experimental and theoretical values of RF for a
`twinning-free' data set. Lower curves (triangles), experimental and
theoretical values of RF for a perfectly twinned data set showing incorrect
hexagonal symmetry instead of trigonal symmetry. The two horizontal
lines at ordinates of 1.13 and 1.27 show the theoretical values of RF for
perfectly twinned and untwinned data, respectively.

1 Anyone unaware of these problems is eagerly encouraged to read the
illuminating review by Yeates (1997). For an even more recent account, see
Yeates & Fam (1999).



other term, var"(X), is simply the result of experimental errors

and is obviously unrelated to the ®rst term. Therefore, both

terms add up to produce the observed variance, var(X), and

(4) should be written as

RX � 1� �var��X� � var"�X��=hXi2
� RXideal � var"�X�=hXi2: �5�

Doubtless, the statistical test supposed to detect a possible

twinning deals only with var�(X) and, therefore, the experi-

mental variance can only interfere with the ®nal result by

increasing the observed value relative to the ideal value

RXideal. This is immediately apparent from the graphs of hRF i
in resolution shells for the DIS crystals (Fig. 1). The increase

of the observed value with resolution is simply the result of

hF i2 decreasing with resolution. In order to recover the ideal

value, var"(X ) must be made more explicit. The latter can be

tentatively expressed by either of the following expressions:

var"�X� � var0 � "hXi2 or var"�X� � var0 � "hX2i; �6�
with var0 and " being the constants to be determined. These

are only ad hoc expressions which should not be scrutinized

too closely. They can be particularly wrong for the weakest

intensities, which often have large � values. Therefore,

excluding (if necessary) the highest resolution range for this

study, and using the ®rst expression for var"(X), together with

(5) and the de®nition RX = hX2i/hXi2, we obtain

RX � RXideal � �var0 � "hXi2�=hXi2
� RXideal � "� var0=hXi2; �7�

a form which is amenable to linear least-squares determina-

tion of RXideal, with RX and hXiÿ2 being the observed function

and variable, respectively. There remains an ambiguity, as " is

not easily determined and the quantity RXideal + " is obtained,

rather than RXideal. A priori, " is a small term (at most a few

percent, otherwise the data are of questionable quality) which

should not signi®cantly change the result. Furthermore, the

spread of the data (see Fig. 1), which results in a high corre-

lation between the obtained values of RXideal + " on the one

hand and of var0 on the other, probably renders illusory the

correction owing to ". Thus, we feel that " can be neglected

and that the obtained value for RXideal is, therefore, rather

slightly overestimated than underestimated. We are well

aware, however, that only an investigation of several real cases

would allow the drawing of ®rm conclusions on this.

This treatment has been introduced into the program

LOCHVAT (Dumas, 1994a,b) to check systematically native

and derivative data sets prior to using the different functions

of the program, namely scaling derivative to native data,

determining lack of isomorphism and heavy-atom searching.

The results were satisfactory as judged by the two cases shown

in Fig. 1, illustrating the excellent ®t between the observed

values for RF and the calculated ones from (7) taking into

consideration the in¯uence of experimental errors. The ®rst of

these cases, corresponding to the possibly hexagonal crystal

form which gave a quite misleading uncorrected average value

hRFi = 1.23, was in fact found to be perfectly twinned, as

judged by the values var0 = 9.7 (e.s.d. = 3) and RFideal = 1.124

(e.s.d. = 0.035), the latter being extremely close to 1.13, the

theoretical value for twinning. (Fig. 1, lower curves). The

corresponding values for the second data set were also quite

clear: var0 = 9.2 (e.s.d. = 2.6) and RFideal = 1.272 (e.s.d. = 0.036),

the latter value being in perfect agreement with 1.27, the

theoretical value for no twinning. It was also found that one

data set (not shown in Fig. 1) from a partially twinned

ruthenium derivative (� = 25.2%) correctly gave an inter-

mediate value RFideal = 1.169 (e.s.d. = 0.031) with var0 = 2.0

(e.s.d. = 2.9) before untwinning and gave, as expected, the

excellent value RFideal = 1.28 (e.s.d. = 0.021) with var0 = 1.9

(e.s.d. = 1.8) after untwinning was performed.

3. A new form to express `twinning' and `untwinning'
operations

The aim of this section is to propose an alternative para-

metrization to describe twinning. Although these considera-

tions do not at ®rst seem to have any other relevance than

shedding light on some theoretical aspects, they in fact have

interesting and unexpected consequences. The `twinning'

matrix T(�), given in (2), of the linear system (1a,b) can be

expressed as the product of a scalar and of a matrix with unit

determinant, namely

T��� � 1ÿ � �

� 1ÿ �
� �
� D���1=2 �1ÿ ��=D���1=2 �=D���1=2

�=D���1=2 �1ÿ ��=D���1=2

" #
; �8a�

with D(�) de®ned by (3). The matrix U(�) is thus of the form

U��� � �1ÿ ��=D���1=2 �=D���1=2

�=D���1=2 �1ÿ ��=D���1=2

" #

� a b

b a

� �
�8b�

and, therefore, det[U(�)] = a2 ÿ b2 = 1, from which it follows

that we can make the change of variables de®ned by

cosh � � �exp��� � exp�ÿ���=2 � �1ÿ ��=D���1=2 �9a�
sinh � � �exp��� ÿ exp�ÿ���=2 � �=D���1=2 �9b�

by virtue of the identity cosh2� ÿ sinh2� = 1. For the operation

of `twinning' represented by T(�), this new parametrization

leads to

exp�ÿ2�� � 1ÿ 2� � D��� �10a�
and for the operation of `untwinning' represented by Tÿ1(�)

with determinant 1/D(�), it leads to

exp�ÿ2�� � 1=�1ÿ 2�� � 1=D���: �10b�
With this new variable, the matrix with unit determinant in

(8b) can be transformed into
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U��� � cosh � sinh �
sinh � cosh �

� �
�11�

and T(�) is replaced by �(�) such that

���� � exp�ÿ��U���: �12�

This form has the following interesting properties. Firstly, it is

immediately veri®ed that these matrices have a Lie group

structure,2 as �(�1)�(�2) = �(�1 + �2), from which it follows

that �ÿ1(�) = �(ÿ�). Although, unlike �, it has no obvious

physical meaning, the new variable � thus gives sense to the

intuitive (and loosely expressed) idea that `twinning a data set

by �1' and then again `by �2', is identical to `twinning it once by

�1 + �2'. Secondly, contrary to the usual form which makes use

of T(�) and Tÿ1(�), both twinning and `untwinning' are

expressed by the same matrix �(�), � being positive for

twinning and negative for `untwinning'. Incidentally, it is

apparent, as the determinant of �(�) is equal to exp(ÿ2�),

that twinning (� > 0) corresponds to `shrinking' the data

(owing to averaging) and `untwinning' (� < 0) corresponds to

`expanding' the data, and the errors as well (Grainger, 1968;

Fisher & Sweet, 1980)! The most interesting consequence of

such parametrization will be apparent in x4.

4. Cross-determination of the twinning factors for
several data sets

When partial twinning corrupts data, their use depends on a

correct determination of the twinning factor � (or � as de®ned

in x3) in order to invert the set of linear equations (1a,b).

There exist statistical methods to obtain an estimate of � by

use of the intensities of the twinned data set independently of

all other data sets (Britton, 1972; Fisher & Sweet, 1980; Rees,

1980; Yeates, 1988). However, one may want to re®ne such

estimates, as any systematic error will negatively affect the

result. In the case of phasing by the MIR method, for example,

it is likely that the best method would probably be to consider

the twinning factor as a re®nable parameter in the program

used for heavy-atom parameter re®nement. In order to keep

the number of free parameters to a minimum, which is always

good practice, the following method can be proposed. It relies

on the fact that a correctly `untwinned' data set should be

maximally correlated to any reference data set (i.e. considered

`twinning-free'),3 For the sake of generality, the hypothesis

that one data set truly is `twinning-free' can be abandoned, as

it is this which is to be veri®ed, and there may therefore be

considered to be a twinning factor to be determined for all the

data sets. The correlation coef®cient between two data sets,

Ii(�i) and Ij(�j), is thus a function of the two parameters �i and

�j necessary to invert the linear system (1a,b), with � denoting

either the usual `twinning ratio' �, or the newly proposed �
parameter. By de®nition,

Cij��i; �j� �
h�Ii��i� ÿ hIi��i�i��Ij��j� ÿ hIj��j�i�i

�hI2
i ��i�i ÿ hIi��i�i2�1=2�hI2

j ��j�i ÿ hIi��j�i2�1=2
: �13�

The use of a correlation coef®cient is certainly a good choice,

as this is a very robust tool and does not depend on the correct

scaling of the compared data sets, contrary to the usual R

factor. Since we seek to maximize Cij(�i, �j), which is positive in

cases of practical interest, we can equivalently consider its

square.

4.1. Using of the usual `twinning ratio' (n = a)

Somewhat lengthy, but elementary, algebraic calculations

lead to the following expression:

C2
ij��i; �j� �

fAij��i�j ÿ ��i � �j�=2� � Bijg2
�Aii�i��i ÿ 1� � Bii��Ajj�j��j ÿ 1� � Bjj�

�14�

with, explicitly,

Aij � 2�Rij ÿ SiSj=Nij�; �15a�
Bij � Pij ÿ SiSj=�2Nij�; �15b�
Rij �

P
h

�J1
ih � J2

ih��J1
jh � J2

jh�; �15c�

Pij �
P

h

�J1
ihJ1

jh � J2
ihJ2

jh�; �15d�

Si �
P

h

�J1
ih � J2

ih�; Sj �
P

h

�J1
jh � J2

jh�; �15e�

Qij � 4Bij ÿ Aij � 2
P

h

�J1
ih ÿ J2

ih��J1
jh ÿ J2

jh�; �15f �

the J1
ih and J2

ih terms being the observed hth pair of twinning-

related intensities (hence the exponents `1' and `2') of the ith

data set and 2Nij being the number of common re¯ections

between the ith and jth data sets (i.e. Nij terms J1
ih are

compared with Nij terms J1
jh and likewise for J2

ih and J2
jh). For

the terms Aii, Bii, Ajj and Bjj, Nii and Njj should both be

considered equal to Nij.

Such a simple analytical expression (14), yielding all

cross-correlation coef®cients Cij, may give the impression that

all twinning ratios can be uniquely determined by imposing

the condition that all partial derivatives @Cij/@�i and @Cij/@�j be

zero. This is wrong, however, as shown by Fig. 2(a), which

illustrates a test concerning two synthetic data sets with known

twinning ratios: a degenerate elongated peak, rather than a

single peak, is obtained. This will be fully explained later.

However, if one of the two twinning ratios is considered to be

known, say �i, and solving @Cij /@�j = 0 for �j, we obtain a

simple second-degree algebraic equation whose (always real)

solutions are

�j � �Aij�i ÿ 2Bij�=�Aij�2�i ÿ 1��; �16a�

�j � �AijQjj�i � 2�AjjBij ÿ AijBjj��=AjjQij: �16b�
Solution (16a) is uninteresting as it can be veri®ed that it

corresponds to Cij(�i, �j) = 0 (also an extremum of the square

of the correlation coef®cient), whilst solution (16b) gives the

value of �j which maximizes Cij(�i, �j). The value of this

2 It may be noticed that the in®nitesimal generator of the group formed by the
�(�)s is simply T(�). This means that [T(�/n)]n! �(�) for n!1.
3 Although this very intuitive statement does not seem to need long proof, it is
examined in some detail in Appendix A.



maximum, as a function of �i, is explicitly obtained by

combining (14) and (16b)4

Cmax
ij ��i� �

ÿf2AjjBij�Aij ÿ 2Bij� �17�
ÿ A2

ij�Bjj � �Ajj ÿ 4Bjj��i�1ÿ �i��g=
fAjj�Ajj ÿ 4Bjj��Bii ÿ Aii�i�1ÿ �i��g

�1=2
:

Interestingly, (16b) gives the equation of the straight line

corresponding to the the locus of the maxima of correlation in

Fig. 2(a) and (17) con®rms that there is no isolated maximum

along this line (Fig. 2c), contrary to the clear maximum along

the line at a constant value of �i (Fig. 2b; note that i = 1 and j = 2

in Fig. 2).

If, therefore, several data sets are considered, the knowl-

edge of one twinning ratio leads in turn to accurate cross-

determination of all others. Therefore, considering again the

re®nement of twinning ratios within the scope of the MIR

method, only one should be considered as a free parameter,

since all others are uniquely determined from (16b). Such a

parameter would doubtlessly be easily re®ned, as it would

have a considerable in¯uence on all intensities of all data sets.

4.2. Use of the new parametrization (n = h)

By simply replacing the twinning ratio � in (14) by its �
equivalent as given in (10b) (since untwinning is required), we

obtain

C2
ij��i; �j� � f�Aij exp��i � �j� �Qij exp�ÿ�i ÿ �j��2g

� f�Aii exp�2�i� �Qii exp�ÿ2�i��
� �Ajj exp�2�j� �Qjj exp�ÿ2�j��g; �18�

with the same de®nitions of the Aij and Qij terms as in (15a±f).

Although this form does not seem to be anything other than

the result of a change of variable, it yields very unexpected

results. Contrary to the previous situation, the graph of

Cij (�i, �j) (Fig. 3a) strongly indicates that a solution for both �i

and �j could be found, as a clear feature (a narrowing of the

iso-correlation lines) is visible around the solution. Quite

interestingly, the line of maximum correlation given by (16b)

(the dashed line in Fig. 2a) is transformed equally into a

straight line in Fig. 3(a), as (16b) is transformed into

�j � �i � log��AijQjj=AjjQij�1=2�: �19�
The fact that this line has unit slope leads to optimization of

the search for a solution by maximizing the correlation coef-

®cient at a constant value of �S = �i + �j. By considering �i and

�S as independent variables, one obtains �i as a function of �S,

�i � 1
2 ��S � 1

4 log�AjjQii=AiiQjj��; �20a�
which is equivalent to

�i ÿ �j � 1
4 log�AjjQii=AiiQjj�
� 1

4 log�Qii=Aii� ÿ 1
4 log�Qjj=Ajj�: �20b�

At ®rst sight, (19) and (20b) should yield identical results. This

is not the case, however, as (19) results from searching for a

maximum at a constant value of �i and (20b) from searching at

constant �S. It is seen that the following solutions

�i � 1
4 log�Qii=Aii� and �j � 1

4 log�Qjj=Ajj� �21a�
or, expressed with the usual twinning ratio variables,

�i � 1
2 �1ÿ �Qii=Aii�1=2� and �j � 1

2 �1ÿ �Qjj=Ajj�1=2�; �21b�
are consistent with (20b). Obviously, this consistency does not

imply that these are the true solutions and, indeed, they are

not. However, many numerical tests have shown that these

simple expressions are remarkably close to the true solutions.

Furthermore, the solution for �i is independent of the jth data

set and vice versa! This is striking, as these solutions essentially

result from comparisons between the two data sets. Expressing

(21a) in more detail, we obtain

�i � 1
2 logf�h�J1

i ÿ J2
i �2i�=�var�J1

i � J2
i ��g1=2

and

�j � 1
2 logf�h�J1

j ÿ J2
j �2i�=�var�J1

j � J2
j ��g1=2: �22�

The interpretation of this result is clear: the denominator

var(J1
i � J2

i ), the statistical variance of (J1
i � J2

i ), is indepen-

dent of the twinning level as seen from (1a,b), while the

numerator h�J1
i ÿ J2

i �2i depends on it. This result is quite

similar to that obtained by Yeates (1988) based upon the

statistical behaviour of the index Hi � jJ1
i ÿ J2

i j=�J1
i � J2

i �,
which is strongly related to the quantity appearing in (22).

Yeates obtained

�i � 1
2 �1ÿ 2hHii�; �23�

a result identical in its form to (21b). It should be mentioned

that the result here obtained is free of any statistical hypoth-

esis about intensities.

These results have been veri®ed with many test data

obtained as explained in Fig. 2. In all cases, even with large

level of `experimental' errors affecting the calculated

intensities of a twinned crystal, the levels of twinning

obtained from (21a,b), as well as from (23), were extremely

close to the values used for calculating the intensities (see Fig.

3 for one particular, but signi®cant, case). It should be

emphasized, however, that these calculated intensities were

`perfect' as far as the statistical independence between the

subsets of terms I1 and I2 is concerned. This probably means

that these tests are representative of real cases not affected by

non-crystallographic symmetry which may lead to correlation

between the two subsets of terms (the kind of correlation

detected by a self-rotation function!). Effectively, for the

experimental cases described in the next section which are

known to be affected by non-crystallographic symmetry, the

values obtained for � from (21b) were too high by an addi-

tional 10±12%, while the estimates using Yeates' method from

(23) were more accurate [although slightly too low, as small

negative values for � (as low as ÿ4%) were obtained for the

supposedly twinning-free data sets]. More examples are
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required to decide whether some `average' of (21b) and (23)

would yield better estimates.

5. Application to an experimental case

The new cross-correlation-based method for the determina-

tion of the level of twinning will now be tested on an experi-

mental case. It should be emphasized that the test is based

only on the determination of � (or �) and not on its re®nement

within a MIR phasing program; the latter would require a

great deal of work beyond the scope of this paper. However,

the effect of lack of isomorphism will be examined. The

Figure 2
(a) Theoretical calculations of C12(�1, �2) from (14) for two synthetic data sets. Each data set comprised 1500 re¯ections. The ®rst data set was calculated
as random numbers following Wilson statistics (with parameter � taken arbitrarily equal to 1 without loss of generality) and the second was calculated as
the sum of the previous distribution and of an independent distribution with � = 0.2 (aimed at representing, for example, the contribution of heavy atoms
used for MIR phasing). The two data sets were further modi®ed for twinning with the twinning ratios �1 = 0.2 and �2 = 0.3, marked on the graph as
vertical and horizontal lines, respectively. Finally, these two data sets were further modi®ed by the addition of `experimental' random errors following
Gaussian distribution with zero mean and variance equal to 0.05 (i.e. 5% of the average intensity). The contours are from 0.9 (minimum contoured value)
and are equally spaced by 0.0125. The dashed line corresponds to the theoretical line of maximum of correlation as given by (16b). Note that the crossing
point of the horizontal and vertical lines lies almost exactly on this dashed line. Calculations and plots were performed with the software Mathematica 3.0
(Wolfram Research). (b) Correlation pro®le from (14) along the vertical line �1 = 0.2 of (a). The curve shows a clear maximum at �1 = 0.296, very close to
the expected value �1 = 0.3. (c) Correlation pro®le, as given by (17), along the ridge of maximum correlation of C12(�1, �2) shown in (a). Note that the
pro®le is almost ¯at along this line and that no maximum appears for the correct value �1 = 0.2.

experimental case concerns the aforementioned ruthenium

derivative of the DIS crystals (Yusupov et al., 1999). This

derivative data set was in fact a second ruthenium data set

which had been collected with a crystal which had been

transferred into low magnesium concentration solution prior

to ruthenium soaking. Such change in magnesium concentra-

tion (from 100 mM in the usual conditions to 2 mM) produced

a noticeable lack of isomorphism arising from a 1 AÊ change in

the c parameter and, for that reason, a new native data set was

also collected at low magnesium concentration. This new pair

of native and ruthenium derivative data sets, despite a high

level of isomorphism, did not show any of the known sites

from the previous data sets at high magnesium concentration

until the ruthenium derivative was detected to be twinned (see

the last example in x2). The new method to determine � (in

fact �2, the native and ruthenium data sets corresponding to

i = 1 and j = 2, respectively) was then applied by setting �1 = 0

in (16b) and using all common data between 15±3 AÊ . The

resulting value was �2 = 25.2%, corresponding to a maximum

value of the correlation coef®cient of 96.9% in comparison

with 92.7% for �2 = 0%. Yeates' method (Yeates, 1988),

making use of the acentric re¯ections of the ruthenium data

set only, gave � = 23.5% in good agreement with our value.

The correctness of this treatment (and of the ruthenium

positions) was clearly assessed by the fact that, after untwin-

ning was performed with � = 25.2%, the major ruthenium site

appeared clearly as the ®rst peak in the correlation function

used by the program LOCHVAT (Dumas, 1994a,b).

It is quite interesting to consider the effect of lack of

isomorphism (LOI) by using the native data set at 100 mM

magnesium instead of the isomorphous native data set at

2 mM magnesium. With the same resolution range for the



common re¯ections (15±3 AÊ ), we obtained signi®cantly lower

values: �2 = 21.46% for the twinning ratio and 83.3% for the

correlation coef®cient. The increased LOI immediately

explains the decrease in the correlation coef®cient, but also

explains the decrease in the twinning ratio. This can be

rationalized by reasoning on a hypothetical continuous

increase of LOI: if it increased without limits, the correlation

coef®cient between the two `twinning-free' data sets would

tend to vanish and thus �2 would become 0. Thus, it can be

understood that a lower value is found for a moderate increase

in LOI.5 Interestingly, the values obtained for the twinning

ratio �2 with various resolution ranges for the common

re¯ections (from 15±5.5 AÊ to 15±3 AÊ ) are extremely stable for

both cases. We obtained h�2i = 0.252 with an e.s.d. of 0.0014

and h�2i = 0.214 with an e.s.d. of 0.0035, for the more

isomorphous and less isomorphous pairs of data sets, respec-

tively.

6. Conclusions

This work has dealt with two distinct aspects of the twinning

problem. The ®rst aspect concerns an improvement of a

statistical test aimed at detecting twinning a priori, that is to

say without even knowing which pairs of re¯ections are

potentially related by twinning. The improvement is based on

explicit consideration of experimental errors. The second

aspect concerns determination of the importance of twinning

by maximization of the correlation coef®cient between

intensities of two data sets. Probably the most interesting

aspect of the proposed method is that it should allow the

accurate determination of the level of twinning of all data sets

used for phasing with the MIR method, by considering only

one of them as an additional re®nable parameter. For the

moment, however, this is only hypothetical, as this suggestion

awaits practical implementation. Finally, a new parametriza-

tion of twinning by hemihedry is proposed as an alternative to

the usual parametrization representing the volume ratio � of

the two twinned crystals. This new parameter � has the

interesting property of allowing representation of both twin-

ning and `untwinning' operations by the same matrix �(�), �
being positive for twinning and negative for `untwinning'. It

also yields an unexpected result in the cross-correlation-based

method for the determination of twinning level. At variance

with what happens when using �, the latter method yields, for

each data set, an estimate of the � value which is independent

of all other data sets. Whether this new estimate of the twin-

ning level has real practical application in addition to its

theoretical interest is not yet clear.

APPENDIX A
We will consider here in some detail the intuitive statement

following which one can `untwin' a data set by maximizing its

correlation with a reference data set. Our goal is not to prove

this fairly obvious statement, but rather to test the effect of

different levels of difference between the two data sets being

compared. In particular, we consider the effect of large

differences between two data sets (not merely experimental
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Figure 3
(a) Same case as for Fig. 2, but using the parameter � instead of the usual
twinning ratio �. A distinct narrowing of iso-correlation lines around the
correct values �1 = ÿ0.2554 and �2 = ÿ0.4581 (marked with a spot),
corresponding to �1 = 0.200 and �2 = 0.300, respectively, can be observed.
The average values and their e.s.d.s, obtained from (21a,b) and (23) with
20 independent calculated data sets, are �1 = ÿ0.254 (0.013) and
�2 = ÿ0.454 (0.013), �1 = 0.199 (0.008) and �2 = 0.298 (0.005) for
(20a,b), and �1 = 0.200 (0.004) and �2 = 0.326 (0.003) for (23). All values
but one are in perfect agreement with the exact values (as judged from
the e.s.d.). (b) Correlation pro®le along the dashed line in (a). Contrary to
the usual parametrization with � (Fig. 2c), in this case there is a distinct
feature along this line, namely an in¯ection point for the correct value of
�1 (corresponding to the vertical line).

5 In practical cases, for which one would be obliged to use a non-isomorphous
pair of data sets, one may be concerned by this discrepancy between values
obtained at different levels of LOI. It is quite possible, however, that this too
low value for the twinning ratio is an optimum for the purpose of MIR
phasing, since the method in use leads to the best correlation between native
and derivative data sets. More work is necessary to test this optimistic
statement.
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errors) and make use of the � variable. From (17), C2
12(�), the

square of the correlation coef®cient between the reference

data set I1 and the twinned data set J2 (i.e. I2 `twinned by �2 = �')

is given by

C2
12��� �

1

var�I1�
�A exp��� � B exp�ÿ���2
C exp�2�� �D exp�ÿ2�� ; �24�

with var(I1) = hI2
1i ÿ hI1i2, the variance of the data set I1 and

the terms A, B, C and D being de®ned by comparison with

(18). Examination of the graph of C12(�) for test cases (Fig. 4),

even those with quite an important level of difference between

I1 and I2, clearly shows that the correlation decreases in a

Gaussian-like fashion from its maximum value Cmax
12 at � very

close to 0, to an asymptotic value close to 0.5Cmax
12 [as can be

seen from a careful examination of (24) with |�|!1 and the

de®nitions of A and C]. The differences between the two data

sets (whatever their origin) easily explain a small displacement

of the maximum of correlation relative to its exact position

� = 0. It is therefore veri®ed, both theoretically and numeri-

cally, that the maximum is 1 and lies exactly at � = 0 for two

identical data sets, i.e. I1 � I2 (Fig. 4, upper curve). The fact

that the graphs of C12(�) are almost symmetric is a conse-

quence of A and B on one hand, and C and D on the other

hand, being almost equal (see legend of Fig. 4 for numerical

values).

APPENDIX B
After this paper had been submitted, our attention was drawn

to another correlation-based method for the determination of

the level of twinning of a crystal (Taylor & Leslie, 1998). In

contrast to the method presented here, this other method does

not try to maximize a cross-correlation coef®cient between

different data sets but instead seeks to minimize the correla-

tion coef®cient between the two halves of `untwinned' inten-

sities, I1
h and I2

h, related by the twinning operation. The basis of

the method is very clear, as twinning evidently tends to

increase this correlation (up to almost 1 in case of perfect

twinning, as the sole source of differences remaining between

the two halves is then the experimental errors). It is

straightforward to use the method described in this paper in

this new frame by replacing equation (13) by

C��� �

�I1��� ÿ hI1���i��I2��� ÿ hI2���i��

fh�I1����2i ÿ hI1���i2�1=2fh�I2����2i ÿ hI2���i2g1=2
: �25�

Again, after all calculations and simpli®cations coming from

elementary hyperbolic trigonometry have been performed, we

obtain using � = �

C��� � V sinh 2� � C12 cosh 2�

�1ÿ V2 � �C12 sinh 2� � V cosh 2��2�1=2
; �26�

with C12 being equal to the correlation coef®cient between the

two subsets of experimental intensities J1 and J2, that is to say

C12 = C(0) as de®ned by (25), and V being de®ned by

V � 1
2 f�var�J1�=var�J2��1=2 � �var�J2�=var�J1��1=2g: �27�

One immediate simpli®cation can be made as, to a second-

order approximation, V is very close to 1, since there are no

reasons for the two statistical variances var(J1) and var(J2) to

differ signi®cantly, and thus (27) leads to

C��� ' �sinh 2� � C12 cosh 2��=�C12 sinh 2� � cosh 2��; �28a�
which can be transformed into the remarkably simple

expression

C��� ' tanh 2�� � �� �27b�
with tanh(2�) = C12. In order to make the correlation

coef®cient vanish, one obtains for �

� � ÿ�:
This solution is very aesthetic, as it immediately makes

apparent the direct link between the required level of

`untwinning' and the correlation between the two subsets of

intensities J1 and J2 resulting from twinning. However, for that

very reason, it should be noted that this solution can cause

problems, because any non-crystallographic symmetry leading

to correlation between the two subsets of intensities I1 and I2

would be wrongly interpreted as being a consequence of

twinning.
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